(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a__f(b, X, c) → a__f(X, a__c, X)
a__c → b
mark(f(X1, X2, X3)) → a__f(X1, mark(X2), X3)
mark(c) → a__c
mark(b) → b
a__f(X1, X2, X3) → f(X1, X2, X3)
a__c → c
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
a__f(b, X, c) → a__f(X, a__c, X)
a__c → b
mark(f(X1, X2, X3)) → a__f(X1, mark(X2), X3)
mark(c) → a__c
mark(b) → b
a__f(X1, X2, X3) → f(X1, X2, X3)
a__c → c
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
a__f(b, X, c) → a__f(X, a__c, X)
a__c → b
mark(f(X1, X2, X3)) → a__f(X1, mark(X2), X3)
mark(c) → a__c
mark(b) → b
a__f(X1, X2, X3) → f(X1, X2, X3)
a__c → c
Types:
a__f :: b:c:f → b:c:f → b:c:f → b:c:f
b :: b:c:f
c :: b:c:f
a__c :: b:c:f
mark :: b:c:f → b:c:f
f :: b:c:f → b:c:f → b:c:f → b:c:f
hole_b:c:f1_0 :: b:c:f
gen_b:c:f2_0 :: Nat → b:c:f
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
a__f,
markThey will be analysed ascendingly in the following order:
a__f < mark
(6) Obligation:
TRS:
Rules:
a__f(
b,
X,
c) →
a__f(
X,
a__c,
X)
a__c →
bmark(
f(
X1,
X2,
X3)) →
a__f(
X1,
mark(
X2),
X3)
mark(
c) →
a__cmark(
b) →
ba__f(
X1,
X2,
X3) →
f(
X1,
X2,
X3)
a__c →
cTypes:
a__f :: b:c:f → b:c:f → b:c:f → b:c:f
b :: b:c:f
c :: b:c:f
a__c :: b:c:f
mark :: b:c:f → b:c:f
f :: b:c:f → b:c:f → b:c:f → b:c:f
hole_b:c:f1_0 :: b:c:f
gen_b:c:f2_0 :: Nat → b:c:f
Generator Equations:
gen_b:c:f2_0(0) ⇔ b
gen_b:c:f2_0(+(x, 1)) ⇔ f(b, gen_b:c:f2_0(x), b)
The following defined symbols remain to be analysed:
a__f, mark
They will be analysed ascendingly in the following order:
a__f < mark
(7) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__f.
(8) Obligation:
TRS:
Rules:
a__f(
b,
X,
c) →
a__f(
X,
a__c,
X)
a__c →
bmark(
f(
X1,
X2,
X3)) →
a__f(
X1,
mark(
X2),
X3)
mark(
c) →
a__cmark(
b) →
ba__f(
X1,
X2,
X3) →
f(
X1,
X2,
X3)
a__c →
cTypes:
a__f :: b:c:f → b:c:f → b:c:f → b:c:f
b :: b:c:f
c :: b:c:f
a__c :: b:c:f
mark :: b:c:f → b:c:f
f :: b:c:f → b:c:f → b:c:f → b:c:f
hole_b:c:f1_0 :: b:c:f
gen_b:c:f2_0 :: Nat → b:c:f
Generator Equations:
gen_b:c:f2_0(0) ⇔ b
gen_b:c:f2_0(+(x, 1)) ⇔ f(b, gen_b:c:f2_0(x), b)
The following defined symbols remain to be analysed:
mark
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
mark(
gen_b:c:f2_0(
n16_0)) →
gen_b:c:f2_0(
n16_0), rt ∈ Ω(1 + n16
0)
Induction Base:
mark(gen_b:c:f2_0(0)) →RΩ(1)
b
Induction Step:
mark(gen_b:c:f2_0(+(n16_0, 1))) →RΩ(1)
a__f(b, mark(gen_b:c:f2_0(n16_0)), b) →IH
a__f(b, gen_b:c:f2_0(c17_0), b) →RΩ(1)
f(b, gen_b:c:f2_0(n16_0), b)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
a__f(
b,
X,
c) →
a__f(
X,
a__c,
X)
a__c →
bmark(
f(
X1,
X2,
X3)) →
a__f(
X1,
mark(
X2),
X3)
mark(
c) →
a__cmark(
b) →
ba__f(
X1,
X2,
X3) →
f(
X1,
X2,
X3)
a__c →
cTypes:
a__f :: b:c:f → b:c:f → b:c:f → b:c:f
b :: b:c:f
c :: b:c:f
a__c :: b:c:f
mark :: b:c:f → b:c:f
f :: b:c:f → b:c:f → b:c:f → b:c:f
hole_b:c:f1_0 :: b:c:f
gen_b:c:f2_0 :: Nat → b:c:f
Lemmas:
mark(gen_b:c:f2_0(n16_0)) → gen_b:c:f2_0(n16_0), rt ∈ Ω(1 + n160)
Generator Equations:
gen_b:c:f2_0(0) ⇔ b
gen_b:c:f2_0(+(x, 1)) ⇔ f(b, gen_b:c:f2_0(x), b)
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_b:c:f2_0(n16_0)) → gen_b:c:f2_0(n16_0), rt ∈ Ω(1 + n160)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
a__f(
b,
X,
c) →
a__f(
X,
a__c,
X)
a__c →
bmark(
f(
X1,
X2,
X3)) →
a__f(
X1,
mark(
X2),
X3)
mark(
c) →
a__cmark(
b) →
ba__f(
X1,
X2,
X3) →
f(
X1,
X2,
X3)
a__c →
cTypes:
a__f :: b:c:f → b:c:f → b:c:f → b:c:f
b :: b:c:f
c :: b:c:f
a__c :: b:c:f
mark :: b:c:f → b:c:f
f :: b:c:f → b:c:f → b:c:f → b:c:f
hole_b:c:f1_0 :: b:c:f
gen_b:c:f2_0 :: Nat → b:c:f
Lemmas:
mark(gen_b:c:f2_0(n16_0)) → gen_b:c:f2_0(n16_0), rt ∈ Ω(1 + n160)
Generator Equations:
gen_b:c:f2_0(0) ⇔ b
gen_b:c:f2_0(+(x, 1)) ⇔ f(b, gen_b:c:f2_0(x), b)
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_b:c:f2_0(n16_0)) → gen_b:c:f2_0(n16_0), rt ∈ Ω(1 + n160)
(16) BOUNDS(n^1, INF)